
38

Hands-on Software Architecture

4. ACTIVITY 2. SYSTEM CONTEXT ANALYSIS

4.1. ACTIVITY OVERVIEW

4.1.1. OBJECTIVE OF THE ACTIVITY

This activity is to acquire a high-level context of the target system and represent the acquired
system context in diagrams and textual descriptions. The system context is an initial understanding
of the target system in terms of the system boundary, functionality to deliver, information

manipulated, and the runtime behavior of the system. Therefore, the system context is not intended
to serve as a design model; rather, it is utilized as the basis for making specific and detailed design
decisions in subsequent activities.

This activity is especially useful when the complexity of a target system is considerably high or
the architect has no prior knowledge or experiences in the target domain.

4.1.2. STEPS IN THE ACTIVITY

The steps in this activity are shown in Figure 4-1.

Figure 4-1. Steps in Activity of System Context Analysis

Step 1 is to acquire the context of the system boundary, which specifies the computing nodes,

users, external systems, connected devices, and persistent datasets. The boundary context provides
the architect with the high-level view of the target system and its interacting elements.

Chapter 4. Activity 2. System Context Analysis 39

Soo Dong Kim, Hyun Jung La

Step 2 is to acquire the functional context, which specifies the list of system functionalities to

deliver and the actors invoking the functionalities. The functional context provides the architect
with the whole functionality of the system and various subjects interacting with the functionalities.

Step 3 is to acquire the information context, which specifies the persistent datasets and their
relationships. The information context provides the architect with the whole datasets and their
relationships that should be maintained in secondary storages or databases.

Step 4 is to acquire the behavior context, which specifies the overall control flow of the target
system. The behavior context provides the architect with the overall runtime behavior of the target

system.

Step 5 is to acquire any additional system contexts if applicable. The additional contexts should

be determined by considering the requirements and the characteristics of the target system.

4.1.3. INPUT ARTIFACTS

The input artifacts to performing this activity are the followings.

 Software Requirement Specification (SRS)

SRS specifies the functional and non-functional requirements of a target system. Therefore, the

context analysis should be performed around the given SRS.

 Domain Knowledge

The initial SRS provides the description of essential requirements. However, the given SRS
may not be complete, consistent, and/or precise. Hence, architects should also utilize his or her

domain knowledge in modeling the system contexts.

4.1.4. OUTPUT ARTIFACTS

The output artifacts from this activity are the followings.

 Boundary Context

The boundary context specifies the target system, elements in its boundary, and their
interactions in terms of dataflow. The elements in the boundary can be users, external systems,
and hardware devices interacting with the system. Data Flow Diagram can be utilized to model

the boundary context.

 Functional Context

40

Hand-on Software Architecture

Functional Context specifies the functionality provided by the target system, and the system
interaction relationships with users, connected hardware devices, and external systems. Use

Case Diagram can be utilized to represent the functional context.

 Information Context Model

Information Context specifies the persistent datasets manipulated by the target system and their
relationships. A persistent dataset is modeled as a persistent object class in object-oriented

development. Class Diagram can be utilized to specify the persistent information of the system.

 Behavior Context Model

Behavior Context specifies the overall runtime behavior of the target system, i.e., the set of all
valid control flows in the system. Activity Diagram can be utilized to specify the behavior of

the system.

 Other Contexts

The set of 4 context models is generally sufficient for acquiring the system context. However,
a target system may have additional types of contexts that should be comprehended by

architects. For examples, Presentation Context could be useful for systems with intensive user
interactions such as online games, and Deployment Context could be useful for platform-as-a-
service systems.

4.2. STEP 1. ACQUIRE BOUNDARY CONTEXT

This step is to acquire the boundary context of the target system and represent the context. The

boundary context is mainly to show the target system, the elements in the system boundary, and
the interaction between them.

The boundary context can well be specified using Data Flow Diagram (DFD). It consists of four
elements: Process, Terminal, Data Store, and Data Flow as shown in Figure 4-2.

Figure 4-2. Elements of Data Flow Diagram.

 Process

Chapter 4. Activity 2. System Context Analysis 41

Soo Dong Kim, Hyun Jung La

A process in DFD represents a specific functionality, and it is represented as an oval shape. A

process in a DFD can be decomposed into multiple sub-processes in its lower-level DFD, and
hence the system functionality can be refined in incrementally in lower-level DFDs, i.e., level
0 DFD, level 1 DFDs, level 2 DFDs, and more. We utilize only the level 0 DFD, also called

Context Diagram, to represent the boundary context of the system.

 Terminal

A terminal in DFD represents an external entity that provides input to the system and/or
consumes an output from the system. It is represented as a rectangle shape. The common types

of terminals are user, external system interacting with the system, and hardware device
connected.

 Data Store

A data store in DFD represents a persistent dataset and it is represented as a double-lined

shape. A data store specifies an information storage that can be implemented as file, database
table, or a main memory buffer.

 Data Flow

A data flow in DFD represents the transfer of information from one part of the system to another.

It is represented as a textual label over directional arrows. A data flow can be defined between
a terminal and a process, between two processes, or between a process and a data store.

By using DFD, we can effectively represent the boundary context of the target system. That is, the
elements of boundary context are well mapped to the elements of DFD.

 Functionality of the System Process in DFD

 Elements in Boundary Terminal in DFD

 Persistent Data Data Store in DFD

 Flow of Information Data Flow in DFD

The DFD for modeling the boundary context can be constructed systematically by applying the
following tasks.

4.2.1. TASK 1. DEFINE PROCESSES IN DFD

A process in DFD is to represent a specific functionality. At the level 0 DFD, a process represents
a system node, i.e., a computer system or a sub-system. If a target system runs on a single computer

42

Hand-on Software Architecture

system, i.e., a single node, there will be just one process representing the whole systema the level
0 DFD. Often, the name of the process becomes the name of the target system.

For Car Rental Management System, the SRS specifies four system nodes as shown in Figure 4-3.

Figure 4-3. System Nodes of Car Rental Management System

Accordingly, we define four processes of level 0 DFD as shown in Figure 4-4.

Figure 4-4. Car Rental Management System with 4 Nodes

The process of Mobile Client models a mobile app that is used by customers. It provides all the
functionality required for the customers. The process of Web Client models a web application that
is used by customers. It provides the same functionality as the mobile app, but its interface is web

browser based. The process of Regional Office Server models a system node that is used by staffs
of regional centers of the company. It provides all the functionality required for the staffs. The
process of Headquarter Server models a system node that is used by headquarter staffs. It provides

all the functionality required for the headquarter staffs.

Another observation of mobile app is how the mobile app is implemented. A mobile app can be a

native app, web app, or hybrid. The web app form of mobile apps is not physically deployed on
mobile devices; rather, it represents a mobile web browser-based interface and hence its web
service is deployed on its server. This is considered as a virtual node.

Accordingly, the web client is not physically deployed on the clients’ devices; rather, it represents
a web-browser-based interface and hence its web service is deployed on its server. This is also

considered as a virtual node. If we develop a web app for mobile device users, then the level-0
DFD should be represented as a two-tier system as shown in Figure 4-5.

Chapter 4. Activity 2. System Context Analysis 43

Soo Dong Kim, Hyun Jung La

Figure 4-5. Car Rental Management System with 2 Nodes

The remaining parts of the architecture design will be based on this two node-architecture.

4.2.2. TASK 2. DEFINE TERMINALS IN DFD

This task is to model the elements in the system boundary and represent them as terminals of DFD.

The common types of elements in the system boundary are listed below.

 Terminal of User type

A system typically interacts with users. A user of the system is not a part of the system; rather,
the user resides in the system boundary. For example, customers of eCommerce system enter

various requests to the system, and the system provides the results of processing the requests.
Hence, users reside in the system boundary.

Since a user provides input to the system to invoke the system functionality and/or consumes
output of the system, it is modeled as a terminal.

 Terminal of External System type

A system may interact with external systems. Often, an external system does not invoke the
functionality of the target system; rather, the functionality of the external system gets invoked
by the target system. For example, e-commerce systems interact with an external system, Credit

Card Payment Authorizer, system to acquire authorizations for product purchases. Another
example is Car Rental Management System that interact with an external system, Driver
License Validation System, to validate the driver license of a customer.

Since an external system may provide an input to the target system and/or receives an output

from the target system, it is modeled as a terminal.

 Terminal of Hardware Device type

A system may be installed with hardware devices, and it gathers information from the devices
and/or control the devices. For example, a smart factory system is configured with various

hardware sensors to acquire the state information of a factory and various actuators to control
the factory through the actuators.

44

Hand-on Software Architecture

Since a connected hardware device provides its state value to the target system or receives
control commands from the target system, it is modeled as a terminal.

For Car Rental Management System, the SRS specifies four system nodes as shown in Figure 4-6.

Figure 4-6. Terminals of DFD for Car Rental Management System

The DFD for Car Rental Management System includes 3 terminals of user-type, 2 terminals of
external system-type, and 1 terminal for hardware device-type. According to the SRS of the

system, the rental car is equipped with an embedded software that communicates with the
Headquarter server to exchange information including the location and the status of a rental car,
and hence it is treated as a terminal.

4.2.3. TASK 3. DEFINE DATA STORES IN DFD

This task is to identify the persistent information managed by the target system and represent the
information as data stores. A system often manages datasets that should be stored persistently or
permanently in the form of a database. The persistent information managed by the system is

modeled as data stores in DFD. The data store of DFD can be implemented as a file on secondary
storage, database table, or a long-lasting main memory buffer.

For Car Rental Management System, we can derive the persistent information from the SRS as
shown in Figure 4-7.

Chapter 4. Activity 2. System Context Analysis 45

Soo Dong Kim, Hyun Jung La

Figure 4-7. Data Stores of DFD for Car Rental Management System

The system is modeled with 4 processes, i.e., physical nodes. Only 2 of the system nodes are to
maintain the persistent datasets as shown in the figure. The node of Headquarter Server maintains
the master repository, that stores all the persistent datasets. The node of Regional Center Server

maintains a subset of the master repository to maintain the information of the car inventory and
the fees and rates in each regional center.

The other nodes, Mobile App and Web Service do not maintain any persistent datasets and hence

they retrieve the necessary data from the master repository.

4.2.4. TASK 4. DEFINE DATA FLOWS IN DFD

This task is to identify the flow of data items among the processes, terminals, and data stores. Each

data flow is represented as an arrow-headed line with a textual label between elements. The
following questionnaire can be utilized to derive the data flows of the system.

 What are the key inputs from users?

 What are the responses of the target system to the given input?

 What are the data items exchanged by the target system and its external systems?

 What are the data items exchanged between two interacting processes?

 What are the data items that are stored in data stores?

46

Hand-on Software Architecture

Once the flow of data from an element to another is identified, it is represented as a directed arrow
and a name of the data element transmitted. Figure 4-8 show data flows among selected elements

of DFD for car rental management system.

Figure 4-8. Data Flow of DFD for Car Rental Management System

A terminal, Customer, provides his or her identification information and a driver’s license to the
system node, Regional Center Server. Then, the server transmits the customer information to

Headquarter Server, which sends the customer’s driver license information to an external system
Driver License Validator. And the external system sends the Validity Code to Headquarter Server,
which stores the customer's information and the validation code in the data store Customer.

The resulting DFD for Car Rental Management System is shown in Figure 4-9.

Chapter 4. Activity 2. System Context Analysis 47

Soo Dong Kim, Hyun Jung La

Figure 4-9. Resulting DFD for Car Rental Management System

The DFD shows the two system nodes, i.e., tiers, terminals of user types and external systems, data
stores, and data flows for Car Rental Management. As shown in this example, the level 0 DFD
effectively provides architects with the high understanding of the target system in terms of system

nodes, elements in its boundary, persistent datasets, and the data flows among the elements.

4.3. STEP 2. ACQUIRE FUNCTIONAL CONTEXT

Every system provides some functionality, which should be comprehended by architects. That is,
an architect wishes to understand what functionality is delivered by the system and how the system
interacts with users and external systems.

The functional context of the system can be well modeled using Use Case Diagram. The key
elements of Use Case Diagram are actor, use case, and their relationships.

 Actor

An actor in use case diagram represents a type of role played by an entity that interacts with the
system. An actor describes a role played by a human user, a connected hardware device, or an
external system interacting with the system. Examples of actor for Car Rental System are shown

in Figure 4-10.

48

Hand-on Software Architecture

Figure 4-10. Examples of Actor

An actor can be active or passive. An active actor is to invoke use cases, and a passive actor is
requested to perform a certain task by a use case. In Figure 4-10. Customer and RC Staff are
active actors, whereas Card Payment Authorization System is a passive actor that is invoked by
a use case.

 Use Case

A use case is a unit of functionality in use case diagram. It specifies a cohesive functionality
provided by a target system. The name of use cases should be in verb form to reveal some
functionality such as Register Customer and Make Payment. Some use cases for Car Rental

Systems are shown in Figure 4-11.

Figure 4-11. Examples of Use Case

 Relationship

A relationship in use case diagram can be an invocation, generalization, include, and extend.

 Invocation Relationship

An invocation relationship occurs between an actor and a use case. An active actor invokes
the functionality of a use case, and a passive actor is invoked by a use case. Examples of
invocation relationship are shown in Figure 4-12.

Figure 4-12. Examples of Invication Relationship

In the figure, an active actor RC Staff invokes the use case Make Payment, and a passive

Chapter 4. Activity 2. System Context Analysis 49

Soo Dong Kim, Hyun Jung La

actor Card Payment Authorization System is invoked by the use case for an authorization of
a credit card payment.

 Generalization Relationship

Generalization in UML diagrams is a relationship in which an element is based on another
element. It is used as a modeling construct in use case diagram and class diagram in UML.
And it is depicted as a closed arrow-headed line.

In use case diagram, generalization can occur in two forms: between actors and between use
cases.

 Generalization between Actors

A generalization may occur between a base actor and its derived actors. A derived actor
can invoke all the use cases that its base actor can invoke. In Figure 4-15 (a). Base Actor
can invoke the use cases A and B whereas Derived Actor can invoke the use cases A and
B as well as the use case C.

 Generalization between Use Cases

A generalization may occur between a base use case and its derived use cases. The base
case is a functionality placeholder which can be specialized by derived use cases. In Figure
4-15 (b), the base use case Make Payment represent a functionality of making a payment
but does not specify how the payment is made. Its derived use cases provide specific ways
of making the payments: Pay with Case, Pay with Credit Card, and Pay by Wire Transfer.
At runtime, the base use case itself is not executed; rather, one of its derived use case gets
executed.

Figure 4-13. Generalization Relationships in Use Case Diagram

50

Hand-on Software Architecture

 Include Relationship

Include Relationship is defined between a base use case and its included use case. When the
base use case is invoked, it always invokes its included use case. In Figure 4-14, the base
use ‘RT01. Return Car’ always invokes the four included use cases: Get Mileage, Get Gas
Level, Check Car Condition, and Compute Additional Fee. The order of invoking the 4
included use cases is not specified in use case diagram; rather, it is shown in a behavior
diagram such as sequence diagram or activity diagram.

 Extend Relationship

Extend Relationship is defined between a base use case and its extended use case. When the
base use case is invoked, it may optionally invoke its included use case. In Figure 4-14, the
base use ‘RT05. Compute Additional Fee’ may or may not invoke its extended use case
‘RT06. Make Additional Payment’. If a rental car is returned later than the due date or the
gas level is not full as specified in a contract, then the base use invokes the extended use case
to make a payment for the addition fee.

Figure 4-14. Include and Extend Relationships in Use Case Diagram

The use case diagram for the functional context can systematically be constructed by applying the

following sequence of tasks.

Chapter 4. Activity 2. System Context Analysis 51

Soo Dong Kim, Hyun Jung La

4.3.1. TASK 1. DEFINE ACTORS

This task is to identify the actors of the target system. An actor in use case diagram denotes a
specific role played by users, external systems, or connected hardware devices. Identify both active

and passive actors of the system.

4.3.2. TASK 2. DEFINE USE CASES

This task is to model the functionality provided by a target system as a number of use cases. Each

use case represents a cohesive unit of functionality, and it interacts with actors.

 Defining Functional Groups

A functional group represents a cohesive set of functions in a target system, and the whole
system functionality can be seen as a collection of functional groups. The decomposition of

the system functionality into functional groups is useful in modeling the functionality of
complex systems.

The functional groups of a system can effectively be derived from the functional requirements
of a given SRS. Upon defining the functional groups, we then assign a 2 or 3 character-long

identifier to each functional group. For Car Rental Management System, we can define the
following set of functional groups.

 Customer management CM

 Staff Management SM

 Rental Center Registration RC

 Inventory Management IM

 Car Maintenance CA

 Rental Fee Management RF

 Reservation Management RS

 Checkout Management CH

 In-Rental Management IR

 Return Management RT

 Business Analytics BA

 Defining Use Cases for each Functional Group

We now identify use cases for each functional group according to the given SRS. Each use case
is given an identifier that consists of a functional group identifier and a sequence number. For
the functional group of Reservation Management, we can use ‘RM’ as the identify.

52

Hand-on Software Architecture

An effective way of identifying use cases is to apply CRUD operations on the target dataset

manipulated in each functional group. For Reservation Management, we can define the four
use cases by considering the CRUD operations.

 RM01. Make Reservation

 RM02. Retrieve Reservation

 RM03. Modify Reservation

 RM04. Cancel Reservation

4.3.3. TASK 3. DEFINE INVOCATIONS

This task is to define the invocation relationships between actors and use cases. Active actors

invoke their relevant use cases, and passive actors are invoked by use cases. The invocation
relation is denoted as a solid line between an actor and its use case. A directed arrow can be used
as an alternative to the solid line in order to indicate the direction of invocation.

Figure 4-15 shows the two types of actors for Smart Mirror System. Calendar Agent is a software
agent-type actor, and it invokes the two use cases. Hence, it is an active actor. During the

invocation of ‘CR01. Acquire Calendar’, it accesses a passive actor, Calendar System, to retrieve
the calendar content of the current user.

Figure 4-15. Invocation Relationships in Use Case Diagram

Note that all the actors identified in task 1 are connected with their relevant use case(s). The
diagram shows that many of the use cases are invoked by software agent-type actors.

4.3.4. TASK 4. DEFINE RELATIONSHIPS

This task is to define the relationships between use cases and between actors. There are three types

of relationships in UML.

Chapter 4. Activity 2. System Context Analysis 53

Soo Dong Kim, Hyun Jung La

 Define Include Relationship

Define an «include» relationship between a base use case and its included use case. When the

base use case runs, it always invokes the included use case. For Smart Mirror System, the base
use case ‘DM01. Acquire Image Frame’ is to a stream of image frames from a camera, and it
invokes its included use case ‘DM02. Display Image’ displaying each frame in order to provide

the same effect of conventional mirrors.

Figure 4-16. Include Relationship in Use Case Diagram

 Define Extend Relationship

Define an «extend» relationship between a base use case and its extended use case. When the
base use case runs, it optionally invokes the included use case. For Smart Mirror System, the

base use case ‘SM01. Detect People’ is to detect the presence of people on each image frame.
If multiple people are found, then it invokes its extended use case ‘SM02. Handle Multiple
People. The base use case invokes another extend use case ‘SM03. Recognize Face’ only when

one target person is identified. If people are not found on the image, it does not invoke the use
case ‘SM03.’

Figure 4-17. Extend Relationship in Use Case Diagram

54

Hand-on Software Architecture

The functional context in a use case diagram provides architects with a sufficient level of

comprehension on the functionality delivered by the target system.

4.4. STEP 3. ACQUIRE INFORMATION CONTEXT

This step is to acquire the information context of the target system by modeling the persistent
datasets managed by the system. A persistent dataset must have some persistent data attributes as

well as transient attributes. For example, the persistent data attributes of a dataset Customer can
be customer name, address, identification number, phone, and etc.

The information context of the system can be well modeled using Class Diagram. The key elements

of Class Diagram are class, relationships, and cardinalities on the relationship. A class is further
defined with attributes and relevant methods. A relationship in Class Diagram can be Dependency,
Association, Aggregation, Composition, and Inheritance.

 Class

A class is a specification of attributes and permissible operations for a family of objects. A class
can be seen as a group of objects. For Car Rental Management System, Customer is a class that
models a group of individual customers. The name of a class is given in a noun form and should

signify a group of objects. The classes for Car Rental Management System can be Customer,
Staff, Car, Reservation and Rental.

 Relationship Dependency

Dependency establishes a temporal link between instances from two classes. As the weakest
form of relationships between two classes, the dependency is often omitted in class diagrams.

 Relationship Association

Association establishes a persistent link between instances from two classes. This is the most

common type of relationships in class diagram.

 Relationship Aggregation

Aggregation is a whole-part relationship between instances from two classes. That is, an
instance of one class contains the instances of the other class as its attributes.

 Relationship Composition

Composition is a strong form of aggregation where the lifetime of part objects belongs to the
whole object. When the whole object is decarded, its part objects are also discarded.

Chapter 4. Activity 2. System Context Analysis 55

Soo Dong Kim, Hyun Jung La

 Relationship Inheritance

Inheritance is a generalization relationship between a general class and a specific class, i.e.,
superclass and subclass. A subclass inherits the attributes and methods of its superclass.

4.4.1. TASK 1. DEFINE PERSISTENT CLASSES

This task is to define classes for persistent datasets. In object-oriented paradigm, a persistent
dataset is modeled as class, which is stored in a permanent storage or a database. A persistent

object class contains one or more persistent attributes.

 Derive Classes from SRS

The main source for deriving persistent object classes is the given SRS, which specifies the
system functionality and the information manipulated by the functionality. The SRS may not

specify the whole datasets of the system, and hence architects may need to infer the persistent
datasets from each functional requirement item. For example, the SRS of Car Rental
Management System specifies a use case of ‘Reserve Car’. Then, architects may infer persistent
datasets of Rental Car as a physical object class and Reservation as a conceptual object class.

For Car Rental Management System, we can identify the persistent object classes as shown in
Figure 4-18.

Figure 4-18. Classes for Car Rental Management System

Note that each class captures a persistent dataset that should be stored on a secondary storage

typically in a form of database. For example, Rental contains persistent attributes of customer ID,
car item ID, rental fee, deposit amount, insurance option, date checked, rental period, and date
returned.

4.4.2. TASK 2. DEFINE RELATIONSHIPS BETWEEN CLASSES

This task is to define relationships between classes. There are 5 types of relationships in class
diagram.

56

Hand-on Software Architecture

 Dependency

Dependency is a temporal relationship between two classes, and it establishes an interaction

path for a short-term interaction between two objects. As the weakest form of relationships
between two classes, the dependency is often omitted in class diagrams.

 Association

Association establishes a persistent link between instances from two classes. The links between

instances are stored for persistency. This is the most common type of relationships in class
diagram. As in Figure 4-19, the two classes are associated each other, meaning that an instance
of Rental has a persistent link to an instance of Customer.

Figure 4-19. Association between Classes

 Aggregation

Aggregation is a whole-part relationship between instances from two classes. That is, an

instance of one class contains the instances of the other class as its attributes. In Figure 4-20,
an instance of Rental contains a persistent link to an instance of Car Item. That is, Rental cannot
be instantiated without an insurance of Car Item.

Figure 4-20. Aggregation between Classes

 Composition

Composition is a stronger form of aggregation where the lifetime of part objects belongs to the
lifetime of the whole object. The destructor of a Whole Object class must include a logic to

delete its part objects.

 Inheritance

Inheritance is a generalization relationship between a general class and a specific class, i.e.,
superclass and subclass. In Figure 4-21, the superclass Person generalizes its subclasses

Customer and Staff, and each subclass inherits the property of the superclass Person.

Chapter 4. Activity 2. System Context Analysis 57

Soo Dong Kim, Hyun Jung La

Figure 4-21. Inheritance between Classes

4.4.3. TASK 3. DEFINE CARDINALITY ON RELATIONSHIPS

This task is to define cardinalities on relationships between classes. UML defines a convention to

denote various types of cardinalities. A cardinality between two classes specifies how many
instances of another class can be linked to each instance of one class. Figure 4-22 shows a class
diagram with relationships and their cardinalities for Car Rental Management System.

Figure 4-22. Cardinality on Relationships in Class Diagram

Customer has an association with Reservation and a cardinality is defined for each direction of the
association. For the direction from Customer to Reservation, an instance of Customer may have

zero or more instances of Reservation. For the other direction, an instance of Reservation must
have exactly one instance of Customer. The cardinalities as well as relationships between classes
should correctly be specified because they effectively define the structure of the implementation

program codes.

The information context in a class diagram provides architects with a sufficient level of

comprehension on the persistent datasets managed by the target system.

58

Hand-on Software Architecture

4.5. STEP 4. ACQUIRE BEHAVIORAL CONTEXT

This step is to acquire the behavioral context of the target system and represent the context. The
behavior context is a high-level description of the system behavior at runtime, and the runtime

behavior is defined by the valid control flows of the system.

 Functionality vs. Behavior

The functionality of a system is the service provided by the system, i.e., the responsibility of
the system. The functionality can be modeled with a use case diagram.

The behavior of a system is the dynamic behavior of the system, i.e., the sequences of execution

at runtime. The behavior can be specified in behavioral diagrams such as activity diagram,
sequence diagram, state machine Diagram, and timing diagram.

The behavior of a whole system or a sub-system can be modeled with Activity Diagram. The key
elements of Activity Diagram include action, activity, decision, control flow, fork and join,
partition, object node, and data store.

 Action

An action represents a single atomic operation, i.e., either completed or aborted. The action
represents a fine-grained operation.

 Activity

An operation represents a sequence of behavior, which is specified as a workflow among

actions and other activities. Hence, an activity is a larger-grained unit than an action.

 Initial Node

The initial node represents where the system flow starts.

 Final Node

A final node represents an end of the system flow. It can be an Activity Final Node or a Flow

Final Node.

 Control Flow

A Control flow represents the flow of control from one action to the next. It is not to specify
object flows or data flows.

Chapter 4. Activity 2. System Context Analysis 59

Soo Dong Kim, Hyun Jung La

 Decision

A decision node represents a choice among multiple outgoing flows. Each outgoing flow has a

guard condition, and the guard conditions must be mutually exclusive.

 Merge

A merge node represents that multiple incoming flows are merged into an outgoing flow.

 Fork and Join

Fork and Join nodes represent the parallel processing of multiple reads. The fork node
represents the start of multiple threads, and a join node represents the end of running the parallel
threads.

4.5.1. TASK 1. ALLOCATE FUNCTIONAL GROUPS ONTO TIERS

This task is to allocate the functional groups of a system onto tiers if the system has multiple tiers.
That is, we determine which tier of the system should be responsible for providing each functional
group. If a functional group is allocated to more than one tier, the functionality of a functional

group on one tier may slightly be different from the functionality on another tier.

We specify the allocation of functional group in a table of ‘Functional Group Allocation’ as shown

in Table 4-1.

Table 4-1. Functionality Group Allocation

 Tier #1 Tier #2 Tier #3

Functional Group #1

Functional Group #2

Functional Group #3

… … … ….

The tiers of the system are entered on the first row, and the functional groups are entered on the
first column. Place a check mark, , in an entry of the table if the functional group is allocated to

the tier.

For Car Rental Management System, the boundary context in the DFD specifies 2 physical nodes
as shown in Figure 4-5.

60

Hand-on Software Architecture

As discussed earlier, Web App and Web Client are virtual tiers, invoking the functionality of

Headquarter Server using a web browser. Accordingly, there is no need to allocate the
functionality on virtual nodes. Table 4-2 shows the allocation of functional groups onto the tiers.

Table 4-2. Allocation of Functionality Groups for Car Rental Management System

 Regional Office Server Headquarters Server

Customer management (For Clients)

Staff Management

Rental Center Registration

Inventory Management

Car Maintenance

Rental Fee Management

Reservation Management (For Clients)

Checkout Management (For Clients)

In-Rental Management (For Clients)

Return Management

Business Analytics

As shown in the table, each functional group of the system is allocated to its relevant node(s).
Some functional groups such as Customer Management are allocated to both nodes. The

functionality of Business Analytics is allocated only to Headquarter Server node.

4.5.2. TASK 2. DEFINE INVOCATION PATTERNS

An invocation pattern is a specific type of invoking a given function such as ‘invoking a
functionality explicitly by a user’, ‘invoking a functionality upon arrival of an event, and ‘repeat

invoking a functionality in a closed loop’. The invocation patterns become the basis for defining
the runtime behavior of the system using behavior diagrams such as activity diagram.

This task is to define the patterns of invoking the allocated functional groups. That is, we determine
how each functional group should be invoked, and reflect the specified invocation patterns in
drawing an activity diagram representing the whole system behavior.

Chapter 4. Activity 2. System Context Analysis 61

Soo Dong Kim, Hyun Jung La

The common patterns of invoking system functionalities are shown in Figure 4-23.

Figure 4-23. Invocation Patterns shown in Activity Diagram

 Sequential Invocation

This invocation pattern is applied when a system needs to invoke actions or activities in
sequence without any branching, as shown in (a). A sequential invocation may appear in the

62

Hand-on Software Architecture

main process of a system, but it often occurs within other invocation patterns such as closed

loop pattern or parallel invocation.

 Explicit Invocation

This invocation pattern is applied when a user chooses an invocation option from a given set of
choices, as shown in (b). With this pattern, a system menu is given, a user chooses an option

from the menu, and the system runs the chosen action or activity. Note that the system runs the
selected functionality in a synchronous manner. That is, when a system runs a selected option,
all other options in the menu become unavailable until the current option finishes running.

 Closed Loop Invocation

This invocation pattern is applied when a system needs to repeat running some functionality
without being interrupted or preempted. This pattern is often applied to developing embedded
systems that include self-managing capability. For example, autonomous vehicles have limited

interventions from drivers; instead, the vehicles operated in a self-management manner. Hence,
closed loop invocation pattern be used to model this behavior.

 Parallel Invocation

This invocation pattern is applied when a system needs to run multiple threads of control in

parallel. Each thread in the parallel processing runs independently from others. Once all the
threads finish their tasks, they are merged.

 Timed Invocation

This invocation pattern is applied to model the functionality that should be invocated with some

time constrains. The typical types of time constraints are the followings.

 Periodical Invocation

A functionality needs to start running every week.

 During a Time Period

A functionality needs between 9am to 10am.

 After Elapsed Time Period

A functionality needs to be started after the given elapsed time, such as “After 10 Minutes.”

 Event-based Invocation

This invocation pattern is applied to model a functionality that is invoked with events. This

type of systems consists of event emitters and event handlers, and the systems runs an
appropriate event hander upon the arrival of an event. The source of an event and the handler

Chapter 4. Activity 2. System Context Analysis 63

Soo Dong Kim, Hyun Jung La

of the event should be different parties, such as different threads, processes, or tiers. The event

emitters and event handlers run asynchronously.

We now specify the invocation patterns of the identified functional groups. That is, each function

group is associated with one or more invocation patterns. The association of invocation patterns
can be specified in a Table of Invocation Patterns. Table 4-3 shows the invocation patterns of
functional groups for Car Rental Management System.

Table 4-3. Invocation Patterns of Functionality for Car Rental Management System

 Regional Office Server Headquarter Server

Customer management Explicit Explicit

Staff Management Explicit Explicit

Rental Center Registration Explicit Explicit

Inventory Management Explicit Explicit

Car Maintenance Explicit

Rental Fee Management Explicit Explicit

Reservation Management Explicit Explicit

Checkout Management Explicit Explicit

In-Rental Management Event-based, Explicit Event-based, Explicit

Return Management Explicit

Business Analytics Explicit

Each functional group is specified with appropriate invocation patterns. All the functional groups

except ‘In-Rental Management’ reveal the explicit invocation pattern. For ‘In-Rental
Management’, the system may monitor the locations of active rental cars using GPS. When the
location of a rental car is found to be outside of the allowed driving regions, an event is generated
and sent to its event hander. Therefore, its invocation is made in event-driven pattern.

4.5.3. TASK 3. DEFINE THE CONTROL FLOWS OF THE SYSTEM

This task is to define the control flow of the target system by drawing Activity Diagrams. An
activity diagram must be defined for each tier of the system because the software systems on

different tiers provide different functionalities and behaviors.

Once the invocation patterns are defined for all the functional groups, then we can systematically

define their control flows in an activity diagram. The typical order of drawing an activity diagram
is given here.

64

Hand-on Software Architecture

 Defining Start and End Nodes

Define a start node and one or more end nodes.

 Defining Initialization Behavior

Software systems often require an initialization of the main screen, the network connection,
devices connected and data attributes. Define the initialization behavior with actions and
activities at the beginning part of the activity diagram.

 Defining Threads

If the system has a parallel processing pattern, define threads using fork and join constructs.

 Defining Control Flow with Actions and Activities According to Behavior Patterns

Define control flows with actions and activities by considering the behavior pattens of the target

system.

The activity diagrams showing the control flows of the two tiers are shown in Figure 4-24.

Chapter 4. Activity 2. System Context Analysis 65

Soo Dong Kim, Hyun Jung La

66

Hand-on Software Architecture

Figure 4-24. Control Flows of the Two Tiers

The control flow of Regional Office Server is mainly invocation-based. The control of

Headquarter Server consists of two parallel threads. The left thread depicts the explicit
invocation-based control flow, and the right thread depicts a closed loop control flow for
monitoring the checked cars and checking any anomaly on the cars.

4.6. CHECKLIST FOR SYSTEM CONTEXT ANALYSIS

The checklist for software design is a list of criteria and guidelines for evaluating the quality of the
design. Therefore, a checklist is specific to the type of software design artifact. The system context
model can be validated with the following checklists.

4.6.1. CHECKLIST FOR BOUNDARY CONTEXT

The following checklist can be used to validate the boundary context of the system.

 For Process

 Do the processes in the DFD correspond to the nodes, i.e., tiers, specified or implied in the
SRS of the target system?

 Does each tier correspond to the sub-system, which is highly independent and self-
contained?

 Is the runtime overhead of network-based interaction among tiers minimal? If not, is the
runtime overhead inevitable for its benefits?

 Is each tier deployed and maintained independently from other tiers?

 Are the development and operation costs for deploying each node specified by a process
justifiable with the benefits provided?

 For Terminal

 For each process, are all the terminals interacting with the process identified?

 Does the DFD include terminals of all user types?

 Does the DFD include terminals of connected hardware devices, sensors and actuators?

 Does the DFD include terminals of all interacting external systems?

 Does the DFD include terminals of all interacting cloud services and microservices?

 For Data Store

 For each tier specified by a process, does the DFD identify and specify data stores for all the

Chapter 4. Activity 2. System Context Analysis 67

Soo Dong Kim, Hyun Jung La

relevant persistent data maintained by the tier?

 Does each data store represent data elements that are persistent, not transient?

 Does each data store that is redundantly specified in multiple processes deliver significant
benefits such as increased data availability?

 Check if each data store that is redundantly specified in multiple processes does not result
in un-justifiable cost and risk.

 For Data Flow

 Check if each data flow is specified with one or more data items transferred?

 Check if the data flows are only specified between terminal and process, between process
and data store, and between processes.

 Check if the DFD does not include invalid data flows such as between two terminals,
between two datasets, and between terminal and datastore.

4.6.2. CHECKLIST FOR FUNCTIONAL CONTEXT

 For Functional Groups

 Do the functional groups correspond to the functional categories specified in the SRS?

 If not completely corresponding, does the set of functional groups represent a logical and
valid refinement over the functional categories specified in the SRS?

 Is each functional group defined to be mutually exclusive from any other functional group?
That is, there is no functional redundancy between every pair of two functional groups.

 For Actors

 Does use case diagram include all its relevant active actors.

 Does use case diagram include all its relevant passive actors of connected hardware devices,
external systems, and microservices?

 Does use case diagram include all its relevant actors of software agent type? Actors of
software agent type are often utilized to enable automatic and autonomous control.

 For Use Cases

 Does the use case diagram include use cases of CRUD-related operations for manipulating
relevant data elements?

 Does the use case diagram include the system intrinsic use cases beyond CRUD-type use
cases?

68

Hand-on Software Architecture

 Is each use case specified with a use case ID number and a meaningful name? Often, the
use case ID number starts with a prefix that represents a functional group such as CP ‘for
Customer Profile Management’.

 Is the name of each use case specified in a verb form and in a meaning way?

 Are the granularities of use cases sufficiently consistent?

 Are the use cases mutually exclusive for their functionality? That is, check if the
functionality specified in a use case is unique and distinct from those of other use cases.

 For Invocations

 Does each active actor such as user and customer invoke its relevant and appropriate use
cases?

 Does each passive actor such as an external system or a microservice is invoked by some
use case(s)?

 For Relationships

 Check if the only relationship allowed between actors is generalization.

 For generalization, check if a generalized use case is specialized into multiple derived use
cases.

 For «include» relationship, check if the base use case must always invoke its included use
cases?

 For «extend» relationship, check if the base use case may or may not invoke its extended
use cases?

 Check if the «include» relationship is misused to specify the invocation order, i.e., control
flow, among use cases. The «include» relationship is not intended to specify a control flow:
rather, it specifies the inclusion of a sub-functionality in a whole functionality.

4.6.3. CHECKLIST FOR INFORMATION CONTEXT

 For Persistency of Classes

 Check if each class in the class diagram corresponds to some persistent data manipulated
by the system. That is, a class should not represent a transient and temporal dataset.

 Check if the granularity of each class is defined logically based on the principle of data
cohesiveness and single responsibility.

 For Physical and Logical Object Classes

Chapter 4. Activity 2. System Context Analysis 69

Soo Dong Kim, Hyun Jung La

 Does the class diagram capture all the physical data objects as classes, such as Customer
and Vehicle for Car Rental Management System?

 Does the class diagram capture all the logical data objects as classes that capture the results
of business transactions, such as Reservation and Rental.

 Check if the class diagram includes logical objects that capture the session-related
information? A session can be user session, system operation-intrinsic session, and system
session.

 For Relationships

 Does the class diagram include all the necessary relationships of association, aggregation,
composition, and inheritance? The dependency relationship can be omitted in the diagram.

 For two classes A and B with association, does each instance of A need to maintain links,
i.e., permanent dependencies, with instances of B? And, vice versa?

 For aggregation relationship, check if every instance of the whole object class can only be
created with its part objects. That is, a whole object cannot be created without part objects.

 For composition relationship, check if every instance of the whole object class can only be
created with its part objects and the part objects must be deleted when the whole object
gets deleted. That is, check if the lifetime of the whole object is shared with part objects.

 For Inheritance relationship, is the ISA or AKO relationship maintained between a
superclass and its subclass? That is, check if a subclass is defined to be a subtype of its
superclass.

 For Cardinalities

 Does the class diagram include valid cardinalities on every relationship except inheritance?

 Check if the use of the value 1 as cardinality can be 0..1 to allow the optional link.

 When two classes are defined with multiple occurrences of cardinality on both ends, check
if an association class should better be defined between them.

4.6.4. CHECKLIST FOR BEHAVIOR CONTEXT

 Number of Activity Diagrams

 Is the number of Activity Diagrams same as the number of tiers?

 Partitioning of Functionality over Tiers

 Is each functional group allocated to one or more tiers?

70

Hand-on Software Architecture

 Consistency with Functional Context in Use Case Diagram

 Do the actions and activities in the Activity Diagram correspond to the use cases in the use
case diagrams?

 Are there any use cases that are not reflected in the Activity Diagram?

 Are there any actions and activities that have not corresponding use case(s)?

 For Invocation Patterns

 Check if each functional group is assigned with one or more interaction patterns.

 Drawing Activity Diagram

 Is the number of outgoing threads at fork same as the number of incoming threads at join?

 Are there any interactions among parallel threads? There must be no interactions between
threads since they should run independently from other threads to truly be parallel.

 Is a ‘Receive Event’ defined for each ‘Send Event’?

 Are the interactions between tiers defined with appropriate interaction schemes such as
event-based interaction?

 For the control flow of closed loops, is the termination of the flow defined with a
preemption?

